
Ulm University | 89069 Ulm | Germany Faculty of
Engineering and
Computer Science

Proposal for Master Thesis: Develop-
ment of a Platform for Serious Games
with Procedurally Generated Content
Project-Members and authors:
Michael Legner
800817
michael.legner@uni-ulm.de

Reviewer:
Prof. Dr.-Ing. Michael Weber
Prof. Dr. Helmuth A. Partsch

Supervisor:
Julian Frommel, Julia Greim

Year:
2014

c© 2014 Michael Legner

This work is licensed under the Creative Commons. Attribution-NonCommercial-ShareAlike 3.0
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.
Print: PDF-LATEX 2ε

Abstract

In this masters thesis, a platform for developing serious games will be developed. This

proposal outlines the subject and how it will be addressed.

Serious games are distinguished from entertainment games as their primary concern is

to teach. Form a technical standpoint the requirements are not different, therefore the

first step in this thesis is to evaluate game engines to find a suitable one for future usage

in a research project that has started at Ulm University. Key points are ease of learning,

supported platform, future support by the developer and an active community. There

is already a huge number of engines available, how they will be reduced to only three

candidates which will be evaluated in detail is described in section 3. The engine will be

extended by a module to procedurally generate content and adapt it to the player.

After an engine is chosen, a small roleplaying game will be developed to test the created

features. A rough work plan is stated in section 5, followed by the implications on

research in section 6.

iii

Contents

Abstract iii

1. Introduction 1

2. Thesis statement 3

3. Approach and Methods 5

3.1. Cost-utility Analysis . 6

4. Preliminary Results 15

4.1. Open Source Game Engines . 15

4.2. Closed Source Free of Charge Engines 17

4.3. Results . 18

5. Work Plan 19

6. Implications of Research 21

A. Appendix 23

A.1. Engine Cost-Utility Analysis . 23

v

1
Introduction

Procedurally generated content has been used in computer and video games since

the very early days and one of its first usage was to save precious space on disks

and memory. The 1984 game Elite by David Brabam and Ian Bell managed to store 8

galaxies with 256 star systems each in the memory of an BBC Micro home computer

which was only 48 kilobytes. In the 2006 XBox Live Arcade game Roboblitz, textures

were procedurally generated to save disk space as Microsoft enforced strict size limits

on downloadable titles. Furthermore, advanced algorithms are heavily used in the demo

scene where file sizes of executables are restricted to sizes that are less than an average

document file today.

Another use is to increase the replay value of games by randomly generating levels

1

1. Introduction

(Examples: Rogue1, Diablo2, Dwarf Fortress3), items (Diablo2, Borderlands4) and

even adapt to the players play style (Galactic Arms Race5). For some of those task,

middleware systems are available, for example CityEngine6 for urban environments,

Terragen7 for landscapes and Speedtree8 for vegetation.

The term serious games was coined by Clark C. Abt in his 1968 Book of the same

name[1], which describes the concepts of games whose primary focus is not entertain-

ment, but teaching. This does not mean they cannot be fun, it is just not their primary

intention. procedurally generated content (PCG) has also been used in serious games,

mainly to generate different scenarios and adapt to players.

At Ulm University, a joint project[2] involving the departments for computer science and

psychology has launched in 2014 with the goal to develop processes and approaches to

make better serious games. The project is funded by the Carl Zeiss Stiftung[3]. It focuses

both on didactic and technical challenges, which is the reason why both departments

with their respective strengths are brought together.

In this thesis, the goal is to develop a platform used by students and researchers for

serious games over the course of the research project.

1Michael Toy and Glenn Wichman, around 1980
2Blizzard Entertainment, 1996, www.diablo.com
3Tan Adams, 2006, www.bay12games.com/dwarves/
4Gearbox Software, 2009, www.borderlandsthegame.com
5Evolutionary Games, 2009, http://galacticarmsrace.blogspot.com/
6http://www.esri.com/cityengine
7http://www.planetside.co.uk/products/terragen3
8http://www.speedtree.com/

2

www.diablo.com
www.bay12games.com/dwarves/
www.borderlandsthegame.com
http://galacticarmsrace.blogspot.com/
http://www.esri.com/cityengine
http://www.planetside.co.uk/products/terragen3
http://www.speedtree.com/

2
Thesis statement

The goal is to develop a software platform based on an existing game engine with

extensions to help developing serious games in the future. In a modular architecture,

a module to procedurally generate content and adapt it to players performance and

physical condition will be developed.

3

3
Approach and Methods

First, the goal is to find a game engine suitable for the needs of serious games. Finding

a suitable engine is critical, as it will influence the course of the thesis and is not easily

revertible, therefore the decision making process has to be done carefully.

The engine must have all the functionality needed to start developing a game without

having to make changes in its core. The learning curve should not be too steep, as it will

be used by other at Ulm University without major experience in software development.

It would be beneficial if the gameplay code can be written in a language different than

C/C++, as it is not part of the major lectures but Java instead.

For a early evaluation, a cost-utility analysis is done to find two to three potential

candidates, which then are examined in detail. With those candidates, a small game

is developed to test its capabilities, ease of use and time needed to familiarize with the

engines.

For procedural content generation, a suitable approach has the be chosen. Criteria are

5

3. Approach and Methods

complexity of implementation, use in serious and commercial games, and performance.

Also, the randomness of the results has to be controlled, not all will be suited as they

have to be playable.

To test the platform, a small RPG game will im implemented using the game engine

and the PCG. Content not yet seen by the player should be generated according to his

performance and physical condition, measured by a wristband. Adaption should be as

subtle as possible, because if the players notices that the difficulty is raising or dropping,

it could have an impact on his behavior. It will be checked if the game does cover all the

needs of the generation algorithms, if not additional small games will be developed to

cover them.

3.1. Cost-utility Analysis

Game development is not only a big industry, but also a widespread hobby among

software developers. As a result, an enormous number of commercial and free, open

and closed source game engines have been developed. The Wikipedia List of Game

Engines[4] lists 253 engines and libraries in total, while the DevDB[5] on the developer

resource website www.devmaster.net[6] lists 368 engines. It is not possible to try

every one of them therefore they have to be filtered to a bearable number.Beforehand,

engines that are not flexible enough are eliminated, mostly 2D and 2.5D engines and

engines that specialize in a certain genre.

Cost-utility analysis is a form of financial analysis. In this work the so called "Nutzwert-

analyse" is used, which differs from the Cost-utility analysis in english speaking contests,

the latter is mostly used in health economics. The basic idea is to define criteria, catego-

rize and weight them. The process itself is by far not as elaborate as other processes

in decision making, but here the main use is to filter a vast amount of candidates in a

short time period. The weights and degree of fulfillment are set subjectional and were

updated multiple times over the course of the thesis.

The weights are set 0 (not applicable) to 9 (very important), for a detailed list see table

3.1a and degrees of fulfillment are set on a 0 (not available) to 5 scale (very good),

detailed shown in table 3.1b.

6

www.devmaster.net

3.1. Cost-utility Analysis

Score Weight
0 -

1-2 nice to have
3-5 medium
6-8 important
9 very important

(a) Weights used in cost utility
analysis

Score Degree of Fulfillment
0 not available
1 poor
2 fair
3 satisfactory
4 good
5 very good

(b) degrees of fulfillment used in cost-
utility analysis

As reference, the DevDB is used as it provides more information about the activity of

the engine, with additional candidates added by recommendations of the research staff

at Ulm University. First, only active engines were considered and all without or with a

very small number user reviews are eliminated. The list of remaining engines can be

found in table 3.1. Next, the cost-utility analysis is done, the criteria are listed in table

3.2. The following section describes the criteria in detail and the one afterwards shows

and discusses the results.

Selected Engines The selection consists of some well known and lesser know engines.

Generally, open source solutions are prefered, as they provide the ability to do change

at the core if needed (which is not intented) and independence from companies. Most of

the proprietary engines have multiple licencing levels, including access to source code

but only for a large sum, which is not suited for an academic budget. Some engines are

only available through a licencing fee, but may be available for academic purposes at

a reduced fee or even without cost. This is the case for the Unreal Development Kit,

which is a free version based on the Unreal Engine 3 by Epic Games. It was initially not

a candidate, since the focus of the engine is on big budget titles. But with the increasing

importance of small, independent game developer for the industry, having a cheaper

version with less functionality can attract small developer teams and even students.

Therefore, Epic Games (and other companies) have started a program targeted to get

more academic users into Unreal Engine 4[7].

Table 3.1.: considered game engines in cost-utility analysis.

7

3. Approach and Methods

Name Supported

Platforms

Language En-

gine

Language

other

Licence

Blender Game

Engine

Windows,

Linux, MacOS

X

C/C++, Python C/C++, Python GPL

Cafu Engine Windows,

Linux

C/C++ C/C++ GPL

Crystal Space Windows,

Linux, MacOS

X

C/C++ C/C++ LGPL

Esenthel

Engine

Windows,

Linux, MacOS

X, Browser,

Android, iOS

C/C++,

Java, Obj-

C, JavaScript

C/C++, Obj-C,

JavaScript

Proprietary,

free available

Irrlicht Windows,

Linux, MacOS

X

C/C++, C#,

VB.net

C/C++, C#,

VB.net

ZLIB

jMonkey Windows,

Linux, MacOS

X, Browser,

Android

Java Java, Ruby,

Python,

Javascript,

PHP

BSD

libgdx Windows,

Linux, MacOS

X, Browser,

Android, iOS

Java, C/C++ Java Apache 2

Neoaxis 3D

Engine

Windows, Ma-

cOS X

C/C++, C# C/C++, C# Proprietary,

free available

OGRE Windows,

Linux, MacOS

X

C/C++ C/C++ MIT

8

3.1. Cost-utility Analysis

Panda3D Windows,

Linux, MacOS

X

C/C++, Python C/C++, Python BSD

ShiVa Engine Windows,

Linux, MacOS

X, Browser,

Android, iOS

C/C++ C/C++ Proprietary,

free available

Unity Windows,

Linux, MacOS

X, Browser,

Android, iOS

C/C++ C#, JavaScript Proprietary,

free available

C4 Engine Windows,

Linux, MacOS

X

C/C++ C/C++ Proprietary,

cost

DX Studio Windows C/C++, VB C/C++, VB Proprietary,

free available

Leadwerks En-

gine

Windows C/C++, C#,

Java, Perl,

Python

C/C++, C#,

Java, Perl,

Python

Proprietary,

cost

Visual3D

Game Engine

Windows,

Browser

C# C/C++. C#,

Ruby, Python,

F#, Lua

Proprietary,

cost

Unreal Devel-

opment Kit

Windows,

Linux, MacOS

X, Browser,

Android, iOS

C/C++ C/C++ Proprietary,

cost

9

3. Approach and Methods

3.1.1. Criteria

In this section, the criteria used in the cost-value analysis are detailed. An overview is

shown in table 3.2.

Licence

While game engines with open source licences are generally prefered, closed source

solutions are not ruled out if other criteria have good scores. Therefore, open source

licencees get a four times higher weight than closed source, with the other scored with 0.

Technical Aspects

Technical aspects cover criteria programming language, supported functionality, archi-

tecture and supported platforms.

Most game engines are written in C/C++, mostly for performance reasons, but some can

use code written in a different language through bindings or interpreters such as Python

or .NET languages as C#. This is beneficial as C/C++ is not in the curriculum of the

major lectures at Ulm University, which mainly focuses on Java as initial programming

languages. Since most students unfamiliar with it tend to have an avoidance of lower lay-

ered languages and often only heard of the downsides (pointer arithmetic in particular),

at least having an option to write code in a different language would benefit adoption

rate. Changes at the core of the engine are not intended.

Functionality is not a key point, as most engines support all the basic functions in terms

of graphics, sound and input. Advanced features, especially in graphics, are not a hard

requirement.

Supported platforms focuses mainly on computers with Windows, Linux or MacOS.

Having the ability to deploy a game in a browser environment would benefit testing as

setup time would basically be non-existent. Mobile platforms, in particular Apple iOS and

Android would also be beneficial. Availability of either of them or both will be rewarded

with additional points. Additional platforms such as gaming consoles are of no additional

value and therefore not be rewarded with points.

10

3.1. Cost-utility Analysis

Activity of Developers

Since the engine decided on will be use in future projects, it should be actively developed

and maintain by the developers to avoid running into a dead end or having to do more

work on our own which not is not tied in with developing a game, but fixing bugs and

developing additional functionality. Updates should be released in regular cycles. Having

developers actively interacting with the community would benefit the learning curve or

time needed to fix problems, as quick help would be available.

Tool Support

Having the ability to use the engine and develop games in familiar Integrated Develop-

ment Environment (IDE) would be beneficial in terms of familiarization with the engine.

In our case, eclipse is the standard IDE, although mostly students can choose what they

want as long as all needed functionality is available, but are then on their own. The ability

to use assets from artistic tools to create models, animations and textures would also

be of benefit. If the engine itself provides tools for tasks like programming, modelling or

level design would reduce development time and the need to find compatible solutions.

Community

An engine can be good on paper, but if it is not widely used it is of no benefit for us. A

widespread engine with experienced users can help in easing the learning curve and

solving problems quickly. Generally the number of active projects and their general

progress is good indicator, although not all problems are rooted in the used technology..

Ease of Learning

The most important aspect is the ease of learning of the engine. As the projects will

mostly developed by students, it cannot be expected from them to have much experience

in developing projects of this scope, but is also a learning process. Therefore, having a

11

3. Approach and Methods

complex engine is of no benefit. A steep learning curve is probably the most significant

aspect, which can be eased by having sufficient literature (ideally both analog and digital)

and tutorials. Seen the scope of a game engine, good documentation ist a must and

would be beneficial to developers. Having support directly from the developers can also

be a great help, as their knowledge of the inner workings of the engine usually surpasses

that of an average user which would benefit in solving problems related more to the

internals. This criteria is closely tied in with the general activity of the developers.

Table 3.2.: Criteria for cost-utility analysis

Criteria Weight

licence 10

open source 8

closed source 2

technical aspects 30

programming language engine 4

programming language gamecode 7

supported platforms 6

functionality 5

architecture 8

activity of developers 20

frequency of updates 7

time since last update 7

presence in forums/wikis/chats 6

tool support 16

integration in IDEs 7

support for modelling/animation tools 5

provided tools 4

community 17

number of projects 5

activity of projects 6

activity in forums/wikis/chats 6

12

3.1. Cost-utility Analysis

ease of learing 33

learning curve 9

available literature/tutorials 9

documentation 8

support by developers 7

Total: 135

13

4
Preliminary Results

In this section, the results of the cost-utility analysis are presented and discussed. For a

detailed results, the tables for each engine are found in the appendix A.1.

4.1. Open Source Game Engines

The Blender Game Engine is an extension to the modelling tool Blender1. Overall it is

a decent engine, but it lacks developer support and in the future it will be developed to

be an tool for game prototypes, architectural walkthroughs and scientific simulators[8],

which is not the way the research project is going and will be most likely a dead end.

Cafu is also a decent engine with an outdated feature set for visuals. It seems like

development has not stopped, but slowed down a great deal to the point where the
1http://www.blender.org/

15

http://www.blender.org/

4. Preliminary Results

commits to the source code version control system only appear weeks apart, are small

and the last official release dates back to 2012 - not a good outlook and a potential dead

end. Crystal Space is a very similar case, both have not been used in a lot of projects

and activity by developers and users is decent.

Irrlicht is probably one of the oldest still developed engines and is used in quite a few

open source and commercial projects, but the last official release was in 2013, commits

to their version control system have slowed down. The biggest downside is that it is

mainly a graphics engine, everything else has to be provided by add-ons which might

lead into a dead end if development of the plugins stopped or the interfaces in the

core engine changes. Overall a solid engine, but it lacks additional tools and steady

development.

jMonkey is one of the two Java-based engine in this comparison and has a good set

of features with everything needed from a programmers standpoint and good platform

support. Learning curve seems good and quite a few projects are active, but it seems

that the development of the engine has slowed down more and more over the last

months. A major downside is the lack of support for common file formats of modelling

tools, only Blender models are currently supported. It is possible to run jMonkey projects

in a browser, but only as a Java Applet, which got a bad reputation for being security risk

due to flaws in the Java Runtime Environment.

Its competitor libgdx, is heavily developed with new releases every couple of weeks and

an comparable set of features. It also only supports a few model data types, mostly form

open source software like Blender and brings some editors with it, but mostly for minor

task like creating particles. On the plus side it supports all needed platforms and due its

highly active development, libgdx makes it into the final evaluation.

OGRE is a very old engine but still actively developed, with a big community and

many tutorials and literature available. Despite having a competitive score, it will not

be evaluated in the final round. The reason is that it is many a graphics engine and

all additional functionality is provided via add ons. This could be fatal if they are not

developed by the core-developers and interface change, which is a risk not worth taking

and the over features did not bring enough to justify it.

The last of the open source engines in Panda3D, formerly developed closed by Disney

16

4.2. Closed Source Free of Charge Engines

and now in the hands of the Carnegie Mellon University. It has a solid features set and

has been used in a good number of free and commercial projects. It is a solid engine

overall, but will not be considered further as it has almost no active developers. It seems

like is only developed if a student of CMU uses the engine, but otherwise not much

happens. And it does not stand out in any other criteria to justify a place in the final

evaluation.

4.2. Closed Source Free of Charge Engines

Esenthel is very interesting engine with a feature set comparable to commercial engines

and passable licencing fees if desired, but they are bound to the number of developers.

The community and number of projects seems small, but is highly active as is the

development of the engine. It supports all desired platforms and has a good number of

tools with it. The biggest downside is that it can only be used with C/C++ code, which

might be hard to convince student to use the engine, but due to its otherwise high score

it is included in the final round of evaluation.

The NeoAxis engine is based on OGRE, but greatly enhanced by visual updates, more

features and editors. It is actively developed, with major releases every six months. It is

overall a solid engine, but lacks features that stand out and lacks documentation and

tutorials.

Shiva 3D seem overall like a solid engine, supported platforms and a features set

competitive to commercial engines stand out. The downside is that development seems

rather troublesome, the next big version is overdue for 2 years with a beta version only

released recently, the last major version being more than four years old with a small

bugfix version released in december 2013. Despite otherwise seeming like a good

engine, this could prove troublesome which also shows in the scores and therefore it

does not make it into the final round.

Unity is probably one of the most used engines at the moment, from small two man

teams up to large budged productions. Its feature set is unparalleled by most other

engines, especially in provided tools which make almost every other software (including

an IDE and modelling tools) unnecessary for small projects. It is very actively developed,

17

4. Preliminary Results

well documented and the large community provides much help and tutorials, in addition to

the already huge number provided by the developer. It supports all platforms wanted and

gameplay code can be written in convenient languages (C#, Boo (Python implementation)

and UnityScript (JavaScript dialect). In combination, Unity achieves the highest score of

all engines is therefore included in the final round of evaluation.

A bit of special place has the Unreal Development Kit and Unreal Engine 4 in this

comparison. Both are mostly used by big budget products with professionals of all

needed crafts involved. This make for a features set even outperforming Unity, especially

in graphical fidelity, where the engine is one of the most impressive on the market. To

bring smaller teams to use the engine, developer Epic Games has released the UDK

for free, which is based in the Unreal Engine 3. It has all the major features and a huge

amount of tools provided with it. The downside is the complexity, which might be too

much for small projects and students not familiar with a software this size and coded

in C++. Additionally, the current Unreal Engine 4 is available for academic use for free

(but still has a 5% cut of yield has to be paid for sold products, which is not the case

here), but with even more functionality and complexity, it is left out of the final round of

evaluation despite having the second highest score over all. But it might be a viable

option in the future, especially if students already worked with it.

4.3. Results

In the final round of evaluation, three engines will be evaluated in detail: Unity (Score:

486), Esenthel (437) and libgdx (429). Every engine will be used to develop a small game

to see how fast a usable result is possible and the amount of familiarization needed. This

will be described in the thesis.

18

5
Work Plan

First discussions of the topic and ideas took place in April of 2014, followed by phase of

initial research. Due to other projects and lectures, full work on the thesis started in Mid

october 2014 with the evaluation of game engines, which is expected to be finished by

mid november 2014. Until the end of 2014, designing the architecture of the development

platform and first implementation of the prototype game and PCG-module is planned. By

then it will be evaluated if the PCG-module can be used to generate content for games

independent of the genre. If this is not the case, other, small prototypes of other games

will be developed to cover the missing cases.

In 2015, the prototype game and PCG-module is to be finished in February. Afterwards

a technical evaluation is planned and the documentation and thesis is intended to be

finished by the end of march 2015.

19

6
Implications of Research

In parts, everything has been done already: procedural content generation, serious

games, serious game RPG, adaptive content generation. The combination is new as

well as the usage of a device to measure bodily functions to use with adaptive content

generation.

21

A
Appendix

A.1. Engine Cost-Utility Analysis

23

A. Appendix

Blender Game Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 15 96
Programming Language Engine 4 2 8
Programming Language Gamecode 7 4 28
Supported Platforms 6 3 18
Functionality 5 2 10
Architecture 8 4 32
Activity Developer 20 7 46
Frequency of updates 7 2 14
Time since last update 7 2 14
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 11 58
Integration in IDEs 7 3 21
Support for Modelling/Animation Tools 5 5 25
provided tools 4 3 12
Community 17 5 29
Number of Projects 5 1 5
Activity of Projects 6 2 12
Activity in Forums/Wiki/Chats/etc. 6 2 12
ease of learning 33 11 92
learning curve 9 3 27
available literature/tutorial 9 3 27
documentation 8 3 24
support by developers 7 2 14
Total 126 54 361

Table A.1.: cost-utility analysis of Blender Game Engine

24

A.1. Engine Cost-Utility Analysis

Cafu Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 15 96
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 28
Supported Platforms 6 2 12
Functionality 5 4 20
Architecture 8 3 24
Activity Developer 20 7 46
Frequency of updates 7 3 21
Time since last update 7 1 7
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 9 46
Integration in IDEs 7 2 14
Support for Modelling/Animation Tools 5 4 20
provided tools 4 3 12
Community 17 8 46
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 3 18
ease of learning 33 12 97
learning curve 9 3 27
available literature/tutorial 9 2 18
documentation 8 3 24
support by developers 7 4 28
Total 126 57 371

Table A.2.: cost-utility analysis of Cafu Engine

25

A. Appendix

Crystal Space
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 18 110
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 28
Supported Platforms 6 3 18
Functionality 5 4 20
Architecture 8 4 32
Activity Developer 20 7 46
Frequency of updates 7 3 21
Time since last update 7 1 7
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 5 27
Integration in IDEs 7 1 7
Support for Modelling/Animation Tools 5 4 20
provided tools 4 0 0
Community 17 9 51
Number of Projects 5 3 15
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 3 18
ease of learning 33 10 81
learning curve 9 1 9
available literature/tutorial 9 3 27
documentation 8 3 24
support by developers 7 3 21
Total 126 54 355

Table A.3.: cost-utility analysis of Crystal Space

26

A.1. Engine Cost-Utility Analysis

Esenthel Engine
Criteria Weight degree of fulfillment Score
licence 10 5 10
open source 8 0 0
closed source 2 5 10
Technical 30 20 120
Programming Language Engine 4 3 12
Programming Language Gamecode 7 3 21
Supported Platforms 6 5 30
Functionality 5 5 25
Architecture 8 4 32
Activity Developer 20 14 94
Frequency of updates 7 5 35
Time since last update 7 5 35
Activity in Forums/Wiki/Chats/etc. 6 4 24
Tool Support 16 13 69
Integration in IDEs 7 4 28
Support for Modelling/Animation Tools 5 5 25
provided tools 4 4 16
Community 17 8 46
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 3 18
ease of learning 33 12 98
learning curve 9 2 18
available literature/tutorial 9 3 27
documentation 8 4 32
support by developers 7 3 21
Total 126 72 437

Table A.4.: cost-utility analysis of Esenthel Engine

27

A. Appendix

Irrlicht Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 15 90
Programming Language Engine 4 3 12
Programming Language Gamecode 7 3 21
Supported Platforms 6 3 18
Functionality 5 3 15
Architecture 8 3 24
Activity Developer 20 7 46
Frequency of updates 7 2 14
Time since last update 7 2 14
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 10 56
Integration in IDEs 7 4 28
Support for Modelling/Animation Tools 5 4 20
provided tools 4 2 8
Community 17 9 51
Number of Projects 5 3 15
Activity of Projects 6 2 12
Activity in Forums/Wiki/Chats/etc. 6 4 24
ease of learning 33 13 107
learning curve 9 2 18
available literature/tutorial 9 4 36
documentation 8 4 32
support by developers 7 3 21
Total 126 59 390

Table A.5.: cost-utility analysis of Irrlicht Engine

28

A.1. Engine Cost-Utility Analysis

jMonkey Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 19 115
Programming Language Engine 4 4 16
Programming Language Gamecode 7 4 28
Supported Platforms 6 4 24
Functionality 5 3 15
Architecture 8 4 32
Activity Developer 20 9 60
Frequency of updates 7 3 21
Time since last update 7 3 21
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 7 39
Integration in IDEs 7 3 21
Support for Modelling/Animation Tools 5 2 10
provided tools 4 2 8
Community 17 9 52
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 4 24
ease of learning 33 14 116
learning curve 9 3 27
available literature/tutorial 9 4 36
documentation 8 4 32
support by developers 7 3 21
Total 126 63 422

Table A.6.: cost-utility analysis of jMonkey Engine

29

A. Appendix

libgdx
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 19 113
Programming Language Engine 4 4 16
Programming Language Gamecode 7 4 28
Supported Platforms 6 5 30
Functionality 5 3 15
Architecture 8 3 24
Activity Developer 20 14 94
Frequency of updates 7 5 35
Time since last update 7 5 35
Activity in Forums/Wiki/Chats/etc. 6 4 24
Tool Support 16 6 37
Integration in IDEs 7 4 28
Support for Modelling/Animation Tools 5 1 5
provided tools 4 1 4
Community 17 8 46
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 3 18
ease of learning 33 12 99
learning curve 9 3 27
available literature/tutorial 9 3 27
documentation 8 3 24
support by developers 7 3 21
Total 126 64 429

Table A.7.: cost-utility analysis of libgdx

30

A.1. Engine Cost-Utility Analysis

NeoAxis Engine
Criteria Weight degree of fulfillment Score
licence 10 5 10
open source 8 0 0
closed source 2 5 10
Technical 30 17 101
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 28
Supported Platforms 6 2 12
Functionality 5 5 25
Architecture 8 3 24
Activity Developer 20 12 80
Frequency of updates 7 4 28
Time since last update 7 4 28
Activity in Forums/Wiki/Chats/etc. 6 4 24
Tool Support 16 12 61
Integration in IDEs 7 3 21
Support for Modelling/Animation Tools 5 4 20
provided tools 4 5 20
Community 17 9 52
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 4 24
ease of learning 33 11 89
learning curve 9 3 27
available literature/tutorial 9 2 18
documentation 8 2 16
support by developers 7 4 28
Total 126 66 393

Table A.8.: cost-utility analysis of NeoAxis Engine

31

A. Appendix

OGRE Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 14 85
Programming Language Engine 4 3 12
Programming Language Gamecode 7 3 21
Supported Platforms 6 3 18
Functionality 5 2 10
Architecture 8 3 24
Activity Developer 20 11 73
Frequency of updates 7 4 28
Time since last update 7 3 21
Activity in Forums/Wiki/Chats/etc. 6 4 24
Tool Support 16 4 24
Integration in IDEs 7 2 24
Support for Modelling/Animation Tools 5 2 10
provided tools 4 0 0
Community 17 14 28
Number of Projects 5 4 20
Activity of Projects 6 5 30
Activity in Forums/Wiki/Chats/etc. 6 5 30
ease of learning 33 15 123
learning curve 9 2 18
available literature/tutorial 9 5 45
documentation 8 4 32
support by developers 7 4 28
Total 126 63 425

Table A.9.: cost-utility analysis of OGRE Engine

32

A.1. Engine Cost-Utility Analysis

Panda3D Engine
Criteria Weight degree of fulfillment Score
licence 10 5 40
open source 8 5 40
closed source 2 0 0
Technical 30 14 85
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 28
Supported Platforms 6 3 18
Functionality 5 3 15
Architecture 8 3 24
Activity Developer 20 6 39
Frequency of updates 7 1 7
Time since last update 7 2 14
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 6 31
Integration in IDEs 7 1 7
Support for Modelling/Animation Tools 5 3 20
provided tools 4 1 4
Community 17 9 52
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 4 24
ease of learning 33 13 107
learning curve 9 3 27
available literature/tutorial 9 3 27
documentation 8 4 32
support by developers 7 3 21
Total 126 55 366

Table A.10.: cost-utility analysis of Panda3D Engine

33

A. Appendix

Shiva3D Engine
Criteria Weight degree of fulfillment Score
licence 10 5 10
open source 8 0 0
closed source 2 5 10
Technical 30 19 112
Programming Language Engine 4 3 12
Programming Language Gamecode 7 3 21
Supported Platforms 6 5 30
Functionality 5 5 30
Architecture 8 3 24
Activity Developer 20 6 39
Frequency of updates 7 2 14
Time since last update 7 1 7
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 9 43
Integration in IDEs 7 1 7
Support for Modelling/Animation Tools 5 4 20
provided tools 4 4 16
Community 17 8 46
Number of Projects 5 2 10
Activity of Projects 6 3 18
Activity in Forums/Wiki/Chats/etc. 6 3 18
ease of learning 33 11 90
learning curve 9 2 27
available literature/tutorial 9 3 27
documentation 8 3 24
support by developers 7 3 21
Total 126 58 340

Table A.11.: cost-utility analysis of Shiva3D Engine

34

A.1. Engine Cost-Utility Analysis

Unity Engine
Criteria Weight degree of fulfillment Score
licence 10 5 10
open source 8 0 0
closed source 2 5 10
Technical 30 21 127
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 30
Supported Platforms 6 5 30
Functionality 5 5 30
Architecture 8 4 32
Activity Developer 20 13 88
Frequency of updates 7 5 35
Time since last update 7 5 35
Activity in Forums/Wiki/Chats/etc. 6 3 18
Tool Support 16 9 41
Integration in IDEs 7 0 0
Support for Modelling/Animation Tools 5 5 25
provided tools 4 4 16
Community 17 15 85
Number of Projects 5 5 25
Activity of Projects 6 5 30
Activity in Forums/Wiki/Chats/etc. 6 5 30
ease of learning 33 17 142
learning curve 9 4 36
available literature/tutorial 9 5 45
documentation 8 5 40
support by developers 7 3 21
Total 126 80 493

Table A.12.: cost-utility analysis of Unity Engine Engine

35

A. Appendix

Unreal Development Kit
Criteria Weight degree of fulfillment Score
licence 10 5 10
open source 8 0 0
closed source 2 5 10
Technical 30 20 121
Programming Language Engine 4 3 12
Programming Language Gamecode 7 4 28
Supported Platforms 6 5 30
Functionality 5 5 30
Architecture 8 3 24
Activity Developer 20 14 94
Frequency of updates 7 5 35
Time since last update 7 5 35
Activity in Forums/Wiki/Chats/etc. 6 4 24
Tool Support 16 12 59
Integration in IDEs 7 2 14
Support for Modelling/Animation Tools 5 4 24
provided tools 4 5 20
Community 17 14 80
Number of Projects 5 4 20
Activity of Projects 6 5 30
Activity in Forums/Wiki/Chats/etc. 6 5 30
ease of learning 33 15 124
learning curve 9 2 18
available literature/tutorial 9 5 45
documentation 8 5 40
support by developers 7 3 21
Total 126 80 486

Table A.13.: cost-utility analysis of Unreal Development Kit

36

List of Tables

3.1. considered game engines in cost-utility analysis 7

3.2. Criteria for cost-utility analysis . 12

A.1. cost-utility analysis of Blender Game Engine 24

A.2. cost-utility analysis of Cafu Engine . 25

A.3. cost-utility analysis of Crystal Space . 26

A.4. cost-utility analysis of Esenthel Engine . 27

A.5. cost-utility analysis of Irrlicht Engine . 28

A.6. cost-utility analysis of jMonkey Engine . 29

A.7. cost-utility analysis of libgdx . 30

A.8. cost-utility analysis of NeoAxis Engine . 31

A.9. cost-utility analysis of OGRE Engine . 32

A.10.cost-utility analysis of Panda3D Engine 33

A.11.cost-utility analysis of Shiva3D Engine . 34

A.12.cost-utility analysis of Unity Engine Engine 35

A.13.cost-utility analysis of Unreal Development Kit 36

37

Bibliography

[1] ABT, C.C.: Serious Games. University Press of America, 1987 http://books.

google.de/books?id=axUs9HA-hF8C. – ISBN 9780819161482

[2] Über das Projekt - Universität Ulm. http://www.uni-ulm.de/in/

serious-games/ueber-das-projekt.html, . – Last accessed: 2014/10/28

[3] Carl Zeiss Stiftung. http://carl-zeiss-stiftung.de/, . – Last accessed:

2014/10/28

[4] List of game engines - Wikipedia, the free encyclopedia. https://en.wikipedia.

org/wiki/List_of_game_engines, . – Last accessed: 2014/10/25

[5] DevDB - Database of Game Development Resources | DevMaster. http://

devmaster.net/devdb/, . – Last accessed: 2014/10/25

[6] DevMaster - game development news, discussions, and resources. http://www.

http://devmaster.net/, . – Last accessed: 2014/10/25

[7] DAVIS, Ray: Unreal Engine 4 Goes Free for Aca-

demic Use. https://www.unrealengine.com/blog/

unreal-engine-4-goes-free-for-academic-use, . – Last accessed:

2014/10/25

[8] ROOSENDAAL, Ton: Blender roadmap - 2.7, 2.8 and beyond |

Blender Code. http://code.blender.org/index.php/2013/06/

blender-roadmap-2-7-2-8-and-beyond/, . – Last accessed: 2014/10/28

39

http://books.google.de/books?id=axUs9HA-hF8C
http://books.google.de/books?id=axUs9HA-hF8C
http://www.uni-ulm.de/in/serious-games/ueber-das-projekt.html
http://www.uni-ulm.de/in/serious-games/ueber-das-projekt.html
http://carl-zeiss-stiftung.de/
https://en.wikipedia.org/wiki/List_of_game_engines
https://en.wikipedia.org/wiki/List_of_game_engines
http://devmaster.net/devdb/
http://devmaster.net/devdb/
http://www.http://devmaster.net/
http://www.http://devmaster.net/
https://www.unrealengine.com/blog/unreal-engine-4-goes-free-for-academic-use
https://www.unrealengine.com/blog/unreal-engine-4-goes-free-for-academic-use
http://code.blender.org/index.php/2013/06/blender-roadmap-2-7-2-8-and-beyond/
http://code.blender.org/index.php/2013/06/blender-roadmap-2-7-2-8-and-beyond/

Glossary

IDE Integrated Development Environment. 11, 17

PCG procedurally generated content. 2, 19

41

Name: Michael Legner Matrikelnummer: 800817

Erklärung

Ich erkläre, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebe-

nen Quellen und Hilfsmittel verwendet habe.

Ulm, den .

Michael Legner

	Abstract
	Introduction
	Thesis statement
	Approach and Methods
	Cost-utility Analysis

	Preliminary Results
	Open Source Game Engines
	Closed Source Free of Charge Engines
	Results

	Work Plan
	Implications of Research
	Appendix
	Engine Cost-Utility Analysis

